Exploiting inherent relationships in RNN architectures

نویسندگان

  • Danilo P. Mandic
  • Jonathon A. Chambers
چکیده

We provide the relationship between the learning rate and the slope of a nonlinear activation function of a neuron within the framework of nonlinear modular cascaded systems realised through Recurrent Neural Network (RNN) architectures. This leads to reduction in the computational complexity of learning algorithms which continuously adapt the weights of such architectures, because there is a smaller number of independent parameters to optimise. Results are provided for the Gradient Descent (GD) learning algorithm and the Extended Recursive Least Squares (ERLS) algorithm, using a general nonlinear activation function of a neuron. The results obtained degenerate into the corresponding results for single RNNs, when considering only one module in such cascaded systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

k-FFNN: A priori knowledge infused Feed-forward Neural Networks

Recurrent neural network (RNN) are being extensively used over feed-forward neural networks (FFNN) because of their inherent capability to capture temporal relationships that exist in the sequential data such as speech. This aspect of RNN is advantageous especially when there is no a priori knowledge about the temporal correlations within the data. However, RNNs require large amount of data to ...

متن کامل

A Flexible Approach to Automated RNN Architecture Generation

The process of designing neural architectures requires expert knowledge and extensive trial and error. While automated architecture search may simplify these requirements, the recurrent neural network (RNN) architectures generated by existing methods are limited in both flexibility and components. We propose a domain-specific language (DSL) for use in automated architecture search which can pro...

متن کامل

Automated Rnn Architecture Generation

The process of designing neural architectures requires expert knowledge and extensive trial and error. While automated architecture search may simplify these requirements, the recurrent neural network (RNN) architectures generated by existing methods are limited in both flexibility and components. We propose a domain-specific language (DSL) for use in automated architecture search which can pro...

متن کامل

Exploiting Associations between Class Labels in Multi-label Classification

Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...

متن کامل

Empirical Evaluation of RNN Architectures on Sentence Classification Task

Recurrent Neural Networks have achieved state-of-the-art results for many problems in NLP and two most popular RNN architectures are “Tail Model” and “Pooling Model”. In this paper, a hybrid architecture is proposed and we present the first empirical study using LSTMs to compare performance of the three RNN structures on sentence classification task. Experimental results show that the “Max Pool...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 12 10  شماره 

صفحات  -

تاریخ انتشار 1999